Понятия со словосочетанием «отношение равенства»

Связанные понятия

Ра́венство (отношение равенства) в математике — бинарное отношение, наиболее логически сильная разновидность отношений эквивалентности.
Интуициони́стское исчисле́ние выска́зываний, называемое иногда Интуициони́стской ло́гикой — формальная система, отражающая некоторые способы рассуждений, приемлемые с точки зрения интуиционизма. Предложена А. Гейтингом в 1930.
Ограничением понятия - называется логическая операция, состоящая в прибавлении к содержанию понятия нового признака, наличие которого в содержании понятия сужает его объём. При этом исходное понятие будет родовым, а в результате его ограничения получается видовое понятие. Например, «движение ссудного капитала» - «международный кредит».

Подробнее: Ограничение понятий
Предика́т (лат. praedicatum «заявленное, упомянутое, сказанное») — это утверждение, высказанное о субъекте. Субъектом высказывания называется то, о чём делается утверждение.
Детерминированность (от лат. determinans — определяющий) — определяемость. Детерминированность может подразумевать определяемость на общегносеологическом уровне или для конкретного алгоритма. Под жёсткой детерминированностью процессов в мире понимается однозначная предопределённость, то есть у каждого следствия есть строго определённая причина. В таком смысле является антонимом стохастичности. Но детерминированность не всегда тождественна предопределённости. Например, может быть детерминированность...
Реляционное исчисление — прикладная ветвь формальной теории, носящей название «исчисления предикатов первого порядка». В основе исчисления лежит понятие переменной с определенной для неё областью допустимых значений и понятие правильно построенной формулы, опирающейся на переменные, предикаты и кванторы. Наряду с реляционной алгеброй является способом получения результирующего отношения в реляционной модели данных. В зависимости от того, что является областью определения переменной, различают...
Определяющий предикат представляет собой единство собственного предиката с выражением сущности предмета, фиксируемого родовым предикатом. Таким образом, определяющий предикат - это «комплексный» дефиниционный предикат, представленный в своём полном наборе признаков структурным компонентом (отношением тождества, включения и аддиции) и комплексным семантическим компонентом (родовой (классной) семантикой и семантикой дистинкции).
Отноше́ние — математическая структура, которая формально определяет свойства различных объектов и их взаимосвязи. Распространёнными примерами отношений в математике являются равенство (=), делимость, подобие, параллельность и многие другие.
Крите́рий (др.-греч. κριτήριον — способность различения, средство суждения, мерило) — признак, основание, правило принятия решения по оценке чего-либо на соответствие предъявленным требованиям (мере). Особо выделяют критерии истинности знания. Различают логические (формальные) и эмпирические (экспериментальные) критерии истинности. Формальным критерием истины служат логические законы: истинно всё, что не заключает в себе противоречия, логически правильно. Эмпирическим критерием истинности служит...
В теории категорий есте́ственное преобразова́ние предоставляет способ перевести один функтор в другой, сохраняя внутреннюю структуру (например, композиции морфизмов). Поэтому естественное преобразование можно понимать как «морфизм функторов». Эта интуиция может быть строго формализована в определении категории функторов. Естественные преобразования — наиболее базовое определение в теории категорий наряду с функторами, поэтому оно появляется в большинстве её приложений.

Подробнее: Естественное преобразование
Направленное множество в математике — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.
Логика высказываний, или пропозициональная логика (лат. propositio — «высказывание»), или исчисление высказываний — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Сужде́ние — мысль, в которой утверждается наличие или отсутствие каких-либо положений дел.
Экстенсиона́л (от лат. extentio — протяжение, пространство, распространение) — термин семантики, обозначающий объём понятия, то есть множество объектов, способных именоваться данной языковой единицей (категорией). Например, в экстенсионал (категория) понятия «человек» входят все объекты, обладающие свойством «быть человеком» (Сократ — это человек, философ — это человек, мыслящее существо — это человек и т.п.).
Вполне упорядоченное множество — линейно упорядоченное множество M такое, что в любом его непустом подмножестве есть минимальный элемент, другими словами, это фундированное множество с линейным порядком.
Классическая логика — термин, используемый в математической логике по отношению к той или иной логической системе, для указания того, что для данной логики справедливы все законы (классического) исчисления высказываний, в том числе закон исключения третьего.
Принцип разделимости (или принцип отделимости) — один из принципов доказательств в математике, основанный на том, что некоторые не пересекающиеся множества могут быть некоторым образом разделены в пространстве. Являясь всего лишь принципом (а не аксиомой), принцип разделимости требует доказательства обоснованности применения в каждом конкретном случае.
Конгруэнция — отношение эквивалентности на алгебраической системе, сохраняющееся при основных операциях. Понятие играет важную роль в универсальной алгебре: всякая конгруэнция порождает соответствующую факторсистему — разбиение исходной алгебраической системы на классы эквивалентности по отношению к конгруэнции.
Сходи́мость по ме́ре (по вероя́тности) в функциональном анализе, теории вероятностей и смежных дисциплинах — это вид сходимости измеримых функций (случайных величин), заданных на пространстве с мерой (вероятностном пространстве).
Теорема о разностях — теорема, связывающая понятия производной и прямой конечной разности высших порядков для степенной функции натурального показателя степени.
Фу́нкция поле́зности — функция, с помощью которой можно представить предпочтения на некотором множестве альтернатив. Функция полезности является очень удобным вспомогательным средством, которое открывает возможность использования теории оптимизации при решении задачи потребителя. Без использования функции полезности решение такой задачи с математической точки зрения может быть затруднительным. С другой стороны, не каждое предпочтение может быть представлено с помощью функции полезности. Тем не менее...
Полунорма или преднорма — обобщение понятия норма; в отличие от последней, полунорма может равняться нулю на ненулевых элементах пространства.
Логика первого порядка, называемая иногда логикой или исчислением предикатов — формальное исчисление, допускающее высказывания относительно переменных, фиксированных функций и предикатов. Расширяет логику высказываний. В свою очередь является частным случаем логики высших порядков.
Конкретное — философский термин, обозначающий содержательное богатство понятия, отделяющее или делающее объект изучения уникальным на фоне остальных. Понятие конкретно, если оно содержит большое количество признаков. Конкретными, в частности, являются частное и единичное понятие (последнее предполагает пространственно-временно́е положение). Конкретный объект — единичный объект с ясно определёнными признаками.
Логика второго порядка в математической логике — формальная система, расширяющая логику первого порядка возможностью квантификации общности и существования не только над переменными, но и над предикатами. Логика второго порядка несводима к логике первого порядка. В свою очередь, она расширяется логикой высших порядков и теорией типов.
В теории категорий функторы между двумя зафиксированными категориями образуют категорию, морфизмы в которой — естественные преобразования.

Подробнее: Категория функторов
В математике, норма́льная фо́рма — простейший либо канонический вид, к которому объект приводится эквивалентными преобразованиями.
Элемента́рный то́пос — категория, в некотором смысле похожая на категорию множеств, основной предмет изучения теории топосов. Средствами элементарных топосов может быть описана аксиоматика как самой теории множеств, так и альтернативных теорий и логик, например, интуиционистская логика.
Абстра́ктный объе́кт — объект, созданный какой-либо абстракцией или при посредстве какой-либо абстракции; когнитивно представленный объект познания, репрезентирующий те или иные сущностные аспекты, свойства, отношения вещей и явлений окружающего мира. Абстрактные объекты делятся на реальные и идеальные, различающиеся постановкой и решением проблемы существования. Для реальных имеется её конструктивное решение; идеальные же выходят за пределы эффективной проверки (например, континуум). В философии...
Эквивале́нтность катего́рий в теории категорий — отношение между категориями, показывающее, что две категории «по существу одинаковы». Установление эквивалентности свидетельствует о глубокой связи соответствующих математических концепций и позволяет «переносить» теоремы с одних структур на другие.
Коалгебра — математическая структура, которая двойственна (в смысле обращения стрелок) к ассоциативной алгебре с единицей. Аксиомы унитарной ассоциативной алгебры могут быть сформулированы в терминах коммутативных диаграмм. Аксиомы коалгебры получаются путём обращения стрелок. Каждая коалгебра c дуальностью (векторного пространства) порождает алгебру, но не наоборот. В конечномерном случае дуальность есть в обоих направлениях. Коалгебры встречаются в разных случаях (например, в универсальных обёртывающих...
Трансценде́нтное число́ (от лат. transcendere — переходить, превосходить) — это вещественное или комплексное число, не являющееся алгебраическим — иными словами, число, которое не может быть корнем многочлена с целочисленными коэффициентами (не равного тождественно нулю). Можно также заменить в определении многочлены с целочисленными коэффициентами на многочлены с рациональными коэффициентами, поскольку корни у них одни и те же.
Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов.
В теории представлений групп Ли и алгебр Ли, фундаментальное представление — это неприводимое конечномерное представление полупростой группы Ли или алгебры Ли, старший вес которого является фундаментальным весом. Например, определяющий модуль классической группы Ли является фундаментальным представлением. Любое конечномерное неприводимое представление полупростой группы Ли или алгебры Ли полностью определяется своим старшим весом (теорема Картана) и может быть построено из фундаментальных представлений...

Подробнее: Фундаментальное представление
Топологическая семантика является естественной семантикой для неклассических логик, таких как интуиционистская логика и модальная логика. Исторически топологическая семантика появилась раньше более распространенной на данной момент семантики Крипке. Основы топологической семантики были заложены в работах Куратовского.
Скалярное ранжирование — подход к решению многокритериальных задач принятия решений, когда множество показателей качества (критериев оптимальности) сводятся в один с помощью функции скаляризации — целевой функции задачи принятия решения.
Эрмитова форма — естественный аналог понятия симметричной билинейной формы для комплексных векторных пространств. Для эрмитовых форм верны аналоги многих свойств симметрических форм: приведение к каноническому виду, понятие положительной определенности и критерий Сильвестра.
Метатеория — теория, анализирующая методы и свойства другой теории, так называемой предметной или объектной теории.
Противоре́чие (контрадикторность) — отношение двух понятий и суждений, каждое из которых является отрицанием другого. В формальной логике противоречие считается недопустимым согласно закону противоречия. Однако, как показали Кант (антиномии) и Гегель, противоречие есть необходимый этап и результат всякого реального мышления — познания. Если у Канта, и в метафизике вообще, логическое противоречие трактуется как феномен, появляющийся в мышлении в силу его несовершенства или его неправомерного использования...
Подмногообразие ― термин, используемый для нескольких схожих понятий в общей топологии, дифференциальной геометрии и алгебраической геометрии.
Ортогональный (ортонормированный) базис — ортогональная (ортонормированная) система элементов линейного пространства со скалярным произведением, обладающая свойством полноты.
Интуициони́зм — совокупность философских и математических взглядов, рассматривающих математические суждения с позиций «интуитивной убедительности». Различаются две трактовки интуиционизма: интуитивная убедительность, которая не связана с вопросом существования объектов, и наглядная умственная убедительность.
Инвариантная мера — в теории динамических систем мера, определённая в фазовом пространстве, связанная с динамической системой и не изменяющаяся с течением времени при эволюции состояния динамической системы в фазовом пространстве. Понятие инвариантной меры применяется при усреднении уравнений движения, в теории показателей Ляпунова, в теории метрической энтропии и вероятностных фрактальных размерностей.
Интенсиона́л (от лат. intentio — интенсивность, напряжение, усилие) — термин семантики, обозначающий содержание понятия, то есть совокупность мыслимых признаков обозначаемого понятием предмета или явления. Например, в интенсионал понятия «Сократ» входят все свойства, которыми обладает Сократ: человек, мужчина, грек, философ и т.д. Интенсионал противопоставляется экстенсионалу, то есть множеству объектов, способных именоваться данной языковой единицей.
В теории категорий подобъект — это, грубо говоря, объект, который содержится в другом объекте категории. Определение обобщает более старые понятия подмножества в теории множеств и подгруппы в теории групп. Поскольку «настоящее» строение объектов в теории категорий не рассматривается, определение опирается на использование морфизмов, а не «элементов».
В теории категорий, представимый функтор — функтор специального типа из произвольной категории в категорию множеств. В некотором смысле, такие функторы задают представление категории в терминах множеств и функций.
Существенный супремум — это аналог супремума, более подходящий для нужд функционального анализа. В этой науке обычно не интересуются тем, что происходит на множестве меры нуль, что учитывается в определении.
Логистическая регрессия или логит-регрессия (англ. logit model) — это статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём подгонки данных к логистической кривой.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я